
Chris Nesbitt-Smith
Note
Hello!



Chris Nesbitt-Smith
Note
So, to kick things off my name is Chris Nesbitt-Smith, I'm based in London and currently work with some well known brands like learnk8s, control plane, and various bits of UK Government I'm also a tinkerer of open source stuff.

I've using and abusing Kubernetes in production since it was 0.4, believe me when I say its been a journey!

I've definitely got the war wounds to show for it.

We should have time for questions and your best heckles at the end, but if we run out of time or you're not watching this live, then please find me on LinkedIn or in the loft labs slack.

Right lets get going



Chris Nesbitt-Smith
Note
I'm going to spend a bit of time talking about security in the context of multitenancy with a case study.

With the caveat that I've based this entirely on publicly available information, so I'm likely off the mark on many of the points in how they relate to GitPod, they're a big company with much smarter people than I so they likely came up with more innovative solutions than anything I could consider in a few days to write this talk, but it still gives us something relatable to talk to.

So with caveats and disclaimers out of the way, lets dive in.



Chris Nesbitt-Smith
Note
If you've not used gitpod before, you can try it quite simply by going to your favourite github repository



Chris Nesbitt-Smith
Note
by simply prefixing the address with https://gitpod.io/# will



Chris Nesbitt-Smith
Note
take you through to a fully fledged development environment, much like github codespaces or Amazon's cloud9.



Chris Nesbitt-Smith
Note
GitPod is Open Source, so you can run your own instance in your organisation if you want to, particularly in regulated environments where you might otherwise end up using Virtual Desktop Infrastructure (VDIs) for development environments.



Chris Nesbitt-Smith
Note
The interface should feel very familiar to anyone who has used Visual Studio code or any of the forks



Chris Nesbitt-Smith
Note
You get a fully dedicated environment dynamically provisioned for you, with a full IDE and all the tools and plugins you're used to.



Chris Nesbitt-Smith
Note
This should run shivers down the spine of anyone beginning to think about the security implications of basically giving all your users the ability to execute arbitrary code on a remote server and not let one instance affect another, and thats just within a single organisation with a single trust boundary.
Imagine providing this publicly on one a gigantic Kubernetes cluster.



Chris Nesbitt-Smith
Note
The architecture for gitpod is pretty simple, if we take a familiar looking kubernetes cluster



Chris Nesbitt-Smith
Note
And we deploy Gitpod, each instance of a user's development environment is a pod on the cluster.



Chris Nesbitt-Smith
Note
And if we were to look inside a Gitpod Pod,



Chris Nesbitt-Smith
Note
we'd see something along the lines of this, with a single container running multiple processes



Chris Nesbitt-Smith
Note
arguably a bit of an anti-pattern for kubernetes purists, where you might expect to see a more microservice like architecture



Chris Nesbitt-Smith
Note
with a single process running in each container, and pods being 1:1 mapped to the containers apart from sidecars



Chris Nesbitt-Smith
Note
But why run this way?



Chris Nesbitt-Smith
Note
Because gitpod is multi-tentanted, each user needs all the resources for their environment locally, it also needs to be portable to run on environments that work quite like Kubernetes that allow you to compose pods.



Chris Nesbitt-Smith
Note
The complexity would be even more unweildly if you were to run something like this



Chris Nesbitt-Smith
Note
for every instance



Chris Nesbitt-Smith
Note
You might wonder why I'm even talking about GitPod, especially if you've followed the news



Chris Nesbitt-Smith
Note
Where they publicly declared that they're leaving kubernetes



Chris Nesbitt-Smith
Note
After trying relentless for 6 years!



Chris Nesbitt-Smith
Note
well they highlight some of the challenges they were facing, and the complexity of the architecture and give some clues that are interesting to dissect around resource management, security and networking



Chris Nesbitt-Smith
Note
So lets step through some of those starting with resource management



Chris Nesbitt-Smith
Note
Containers have requests



Chris Nesbitt-Smith
Note
and limits



Chris Nesbitt-Smith
Note
Which allows your application to live anywhere in the range up to the limit



Chris Nesbitt-Smith
Note
When it's lower, you are still using all of your CPU and memory requests since those are guaranteed to the process.



Chris Nesbitt-Smith
Note
So if you allocate a large amount of memory, but your app uses a fraction, the rest is wasted



Chris Nesbitt-Smith
Note
No other process is allowed to used that memory.



Chris Nesbitt-Smith
Note
Over-allocating requests is a defensive strategy, but you end up paying for the resources that you don't use.



Chris Nesbitt-Smith
Note
An ideal scenario, memory and CPU consumption are close to the actual request value.



Chris Nesbitt-Smith
Note
When you define a request lower than the actual usage, your app uses more resources than what's guaranteed.



Chris Nesbitt-Smith
Note
If all apps are under allocating requests, the node will be often overcommitted and the kubelet will be forced to evict pods to maintain a reasonable amount of memory.



Chris Nesbitt-Smith
Note
Overcommitting could also trigger the autoscale more frequently, leading to nodes being provisioned and destroyed.



Chris Nesbitt-Smith
Note
This can present a challenge when you're trying to minimize cost while still providing a good experience for your users, not allowing them to impact one another.



Chris Nesbitt-Smith
Note
Since the shape of a user interactions will be very spikey, especially if they're using intellisense, building, compiling, running tests or even just linting



Chris Nesbitt-Smith
Note
So all your load will be bursty, and you'll likely find yourself frequently unwittingly exhausting your resources, exhausting the node, evicting pods, and probably triggering the autoscaler



Chris Nesbitt-Smith
Note
Consequently you're left between a rock and a hard place between terrible developer experience



Chris Nesbitt-Smith
Note
And paying over the odds



Chris Nesbitt-Smith
Note
We've got some options here,
The Completely Fair Scheduler is a Linux thing that you can use to give processes priority over one another, if you've used NICE before as a linux user then you'll understand the concept.
Its very hard to manage and low level



Chris Nesbitt-Smith
Note
Then they tried to do Dynamic resource allocation
which is basically adjusting the requests and limits on the fly, something you'd typically have to redeploy the application since they are immutable properties on the pod spec.
But that didn't really work for them because they can't really move the pods without disrupting the user experience, since they're anchored to the node, for the storage



Chris Nesbitt-Smith
Note
And then you can use SWAP memory which allows you to allocate more memory than you physically hold by using the swap space on the node, which kinda works, but is slow.



Chris Nesbitt-Smith
Note
Those are all quite involved, what are your options though?



Chris Nesbitt-Smith
Note
In gitpod's scenario this developer experience looks like slow intelisense, slow builds, tests and lints.
But in a more traditional application development scenario these are more likely to be presented as latency, so for example API calls to external services and other processing, maybe some machine learning or AI.
So your P99 latency is going to be less predictable causing frequent scaling up/down.



Chris Nesbitt-Smith
Note
Of course you could pay more which is what most people do and we generally gravitate towards, but there is a cost



Chris Nesbitt-Smith
Note
by overspecing the requests, but in that there will always be some CPU and memory that is not used



Chris Nesbitt-Smith
Note
so if this is what our world looks like before



Chris Nesbitt-Smith
Note
we can increase the requests, and we accept that we're wasting a bit of money to just give us some headspace



Chris Nesbitt-Smith
Note
The other option of course is you can allocate a whole node which is possibly more extreme



Chris Nesbitt-Smith
Note
So to plot that a bit



Chris Nesbitt-Smith
Note
If we oversubscribe on resources, we're getting cheaper with some risks but reasonably managable



Chris Nesbitt-Smith
Note
or we can go fully isolated where you don't have a issue with noisy neighbours but its very expensive



Chris Nesbitt-Smith
Note
There is a option in between which is adjusting the requests and limits on the fly, which



Chris Nesbitt-Smith
Note
gets us a bit cheaper



Chris Nesbitt-Smith
Note
There are tools for this, that will basically track usage analyse the data and depending on your configuration of risk toleration will adjust the numbers on the fly



Chris Nesbitt-Smith
Note
There a few tools to do that like Stormforge, Perfect Scale



Chris Nesbitt-Smith
Note
And Kubex, but in essence they all do the same thing here.



Chris Nesbitt-Smith
Note
Second problem they talked about in the blog with gitpod was network complexity which was by far the biggest problem for them



Chris Nesbitt-Smith
Note
So they have loads of environments, and they want to spend the absolute minimum running them, they need to be super lightweight.
Naturally developers you want to make sure can't touch each others instances
well there is network policy for that



Chris Nesbitt-Smith
Note
GitPod is exposing a bunch of ports, which you'll obviously need if you're developing an application you'll want to expose your work to the outside world somehow



Chris Nesbitt-Smith
Note
Naturally the kubernetes answer to that is a service, which means a service for each pod



Chris Nesbitt-Smith
Note
At the beginning they started with an ingress per pod



Chris Nesbitt-Smith
Note
However found that didn't scale to well and caused lots of traffic to move unneccesarily around the cluster



Chris Nesbitt-Smith
Note
If I have all these tenants and they all need their own dedicated ingress controller, the cost is going to increase, I will need more resources to run these pods



Chris Nesbitt-Smith
Note
They then tried a single ingress



Chris Nesbitt-Smith
Note
like you might be more used to seeing



Chris Nesbitt-Smith
Note
However that presented the issue that they had too many services,
which isn't a thing you see very typically in most ordinary situations running regular web services



Chris Nesbitt-Smith
Note
Which you can help a bit by disabling the the service links configuration in the pod



Chris Nesbitt-Smith
Note
But they still got to a point where DNS was failing



Chris Nesbitt-Smith
Note
It worth a brief recap on how services work in kubernetes



Chris Nesbitt-Smith
Note
If we start with a clsuter that looks like this



Chris Nesbitt-Smith
Note
And we create a service



Chris Nesbitt-Smith
Note
The controller manager creates the Endpoint object and populates it with the IP address and port pairs from the Pods.



Chris Nesbitt-Smith
Note
Kube-proxy is a helper component that lives in the cluster



Chris Nesbitt-Smith
Note
and subscribe to changes.
Which will then update the IPVS or iptables rules on the node



Chris Nesbitt-Smith
Note
with the intercept and rewrite rule on its node. In this case, three kube-proxies will write the same rules three times.



Chris Nesbitt-Smith
Note
At the same time, coreDNS will also be notified



Chris Nesbitt-Smith
Note
and dns entries will be created or updated accordingly



Chris Nesbitt-Smith
Note
So where are the issues



Chris Nesbitt-Smith
Note
Well it turns out, if you have a few thousand services in a cluster, managing these iptables can become slow and problematic, resulting in multi minute delays on propagation of service information



Chris Nesbitt-Smith
Note
And with servicelinks enabled as it is by default, every pod is going to have a awful lot of environment variables in scope, with 5000 services in the cluster, you can expect 10,000 environment variables, most of which it won't hopefully won't be able to access by network policy, and its also revealing of what else is going on in the cluster.



Chris Nesbitt-Smith
Note
But why is coredns so slow



Chris Nesbitt-Smith
Note
Its not entirely clear from their write up, but you can imagine that if you've many pods doing DNS lookups this could easily overload the internal DNS resolver



Chris Nesbitt-Smith
Note
So what are your options to sharing resources



Chris Nesbitt-Smith
Note
So generally follow the normal kubernetes way of doing things and avoid having a dedicated thing for everything and share common resources



Chris Nesbitt-Smith
Note
GitPod did network policy to create isolations which is a great start, and you can do the same



Chris Nesbitt-Smith
Note
By default of course all pods in the cluster can talk to any other pod



Chris Nesbitt-Smith
Note
Network policies are a Kubernetes native object that give you the chance to define rules for your internal network.
For example, you might want to control all the outbound or inbound traffic for a namespace.



Chris Nesbitt-Smith
Note
Let's take a look at the example



Chris Nesbitt-Smith
Note
In this particular scenario, we want to limit the inbound traffic to the backend api server.
In particular we want to make sure that:
- The front-end component can issue API request.
- The authentication service cannot issue API requests.



Chris Nesbitt-Smith
Note
We can define a network policy that is just another YAML file.



Chris Nesbitt-Smith
Note
Lets look at all the environment variables that are created for each service



Chris Nesbitt-Smith
Note
We can disable the servicelinks at the pod level, which will prevent them being created,
as a sidebar, kubernetes has paid my bills for a while, but I absolutely loathe the inconsistent naming of things like this, nowhere else in the API does it name properties like this, but now we're stuck with it forever.



Chris Nesbitt-Smith
Note
Rant aside, setting this to false will prevent the environment variables being created, so no longer will there be 2 environment variables for each service port
This only ever existed to provide a consistency with Docker compose, drop a message in the chat if you're using this, or just tell me your favourite API bugbear



Chris Nesbitt-Smith
Note
And then when it comes to iptables limits, lets have a look at the current state of play



Chris Nesbitt-Smith
Note
In this cluster, the purple Pod makes a request to a `type: ClusterIP` Service.



Chris Nesbitt-Smith
Note
Now we know that the Service doesn’t exist.
The IP is just a placeholder.
As soon as the request reaches the network interface, it has to be intercepted and rewritten.
We have to pretend that the IP exists.



Chris Nesbitt-Smith
Note
So the request is changed on the fly and on of the Pod are selected as the destination.



Chris Nesbitt-Smith
Note
We're now back at the Pod to Pod scenario, which of course has to work as the first rule of Kubernetes networking.



Chris Nesbitt-Smith
Note
So the request is changed on the fly and on of the Pod are selected as the destination,
We've described iptables, but that of course it not the only technology that can do that, many things like modern service meshes use eBPF as a trendy new but actually old technology for this



Chris Nesbitt-Smith
Note
What about DNS scaling



Chris Nesbitt-Smith
Note
So what we can do is rather than every pod hitting the coredns service with every single query, if we see that coredns is getting overwhelmed



Chris Nesbitt-Smith
Note
We could run a daemonset that would intercept



Chris Nesbitt-Smith
Note
the queries and provide a local cache



Chris Nesbitt-Smith
Note
if when it it gets a cache hit, it can return the result locally,



Chris Nesbitt-Smith
Note
and only hit the upstream DNS if there is a cache miss



Chris Nesbitt-Smith
Note
though you'd have to be naturally careful to prevent cache poisoning



Chris Nesbitt-Smith
Note
However in the first scenario where coredns is shared



Chris Nesbitt-Smith
Note
if one of your tennants is creating more queries than the others, you've got the possiblity for one tenant to impact others, which is not an unreasonable thing to happen in the real world



Chris Nesbitt-Smith
Note
coredns provides some policies that you can apply which can act as a firewall to at least limit the traffic



Chris Nesbitt-Smith
Note
Obviously friends don't let friends run service mesh in production, but if you've got a bad friends



Chris Nesbitt-Smith
Note
You might find yourself taking your simple vanilla kubernetes cluster with simple networking



Chris Nesbitt-Smith
Note
And adding a service mesh to it with lots of extra proxies with benefits like more containers and processes running than you wanted, another thing to feed and water



Chris Nesbitt-Smith
Note
But it does allow you to define some policies



Chris Nesbitt-Smith
Note
to define how the traffic is allowed to flow through all that extra complexity



Chris Nesbitt-Smith
Note
The last one is workload isolation



Chris Nesbitt-Smith
Note
So the other issue they had, which they have a pod running, which are developer environments, so they'll want to basically have root access to the pod, because you'll want to do stuff like run on privilaged ports, install things, etc



Chris Nesbitt-Smith
Note
breaking your own pod, and maybe others near by you is a problem



Chris Nesbitt-Smith
Note
But it becomes dramatically worse in a hurry if they can start taking over the overall cluster, and a kubelet takeover can often become a rapid route to



Chris Nesbitt-Smith
Note
total cluster takeover, which is a very bad thing for someone trying to provide a trustable multi tenanted cloud developer environment



Chris Nesbitt-Smith
Note
So gitpod solved this with two ways, one is they use kubernetes user namespaces which is a beta feature still not currently generally available.



Chris Nesbitt-Smith
Note
The other is sandboxed runtimes



Chris Nesbitt-Smith
Note
So lets look at user namespaces to start with



Chris Nesbitt-Smith
Note
you basically run the pod as root, but with usernamespaces



Chris Nesbitt-Smith
Note
it uses namespaces in the linux kernel that will map root to any other user on the host node, which gives you the illusion of running as root, you can in general run anything you like, but you're contained



Chris Nesbitt-Smith
Note
Sandbox runtimes



Chris Nesbitt-Smith
Note
If we remember the interfaces in the kubelet with how it creates a pod



Chris Nesbitt-Smith
Note
most the time we create containers the them with the container runtime interface or CRI which is usually containerd by default



Chris Nesbitt-Smith
Note
Which will pull the cointainer image



Chris Nesbitt-Smith
Note
and then run the pod



Chris Nesbitt-Smith
Note
but of course it is modular, we can swap out containerd for something compatible like firecracker or a cloud hypervisor



Chris Nesbitt-Smith
Note
Which will run a lightweight VM basically with vscode inside, which isn't a necessarily bad idea, but isn't what they did



Chris Nesbitt-Smith
Note
So what could we do instead?



Chris Nesbitt-Smith
Note
You can mitigate the risk by reducing privileges in the container.



Chris Nesbitt-Smith
Note
You can set the securityContext property on the Pod or container level to restrict what a Pod or container can do.
Most of the time, you want to make sure that there are no privileged pods and the container does not run as root.



Chris Nesbitt-Smith
Note
Also be careful what capabilities do you assign, and only choose the ones you really need, e.g. the NET_ADMIN on the screenshot is usually not needed, so only assign it if it's needed.



Chris Nesbitt-Smith
Note
The other option you have is to run containers with a stronger isolation.
There are two projects that are popular in this space: gVisor and Katacontainers.



Chris Nesbitt-Smith
Note
The general idea with processes in the linux world is that every call such as reading from the filesystem of using the network from your application is dispatched to the Kernel?



Chris Nesbitt-Smith
Note
Well, with gVisor all those calls are proxied and you can set policies on what containers are allowed to do.



Chris Nesbitt-Smith
Note
Katacontainers takes a different approach



Chris Nesbitt-Smith
Note
to try to solve the issue by running every container in a lightweight VM, instead of filtering on the syscalls.

there are alternatives such as using the cloud hypervisor, firecracker, edera, webassemebly, tinykvm and others that all take a similar approach
there is current innovation in the space, and its worth keeping an eye on



Chris Nesbitt-Smith
Note
if you play back the talk Salman did a couple of weeks ago, his talk was basically that so long as its compatible, you maybe don't need the strong isolation for your non prod workloads, but you might want a more strong isolation for your prod workloads, so please go watch that back if you've not seen it already.



Chris Nesbitt-Smith
Note
What about security then, so I have spoken to you about sharing the cluster between various teams. What about security in that scenario.
Lets explore how we can apply that to start with, since theres zero overhead its a useful baseline



Chris Nesbitt-Smith
Note
Well let me present to you what Daniele presented in the first webinar. On the very left we have namespaces for multi tenancy and on the very right you have dedicated cluster per workload



Chris Nesbitt-Smith
Note
Within that spectrum there options that give you varying levels of isolation to trade with cost and complexity overhead.



Chris Nesbitt-Smith
Note
And its unlikely to be a situation where you just choose one, you'll likely have a mix of solutions and configurations of those to suit your needs.



Chris Nesbitt-Smith
Note
But as I said at the start, GitPod ultimately concluded on none of these, and you should always keep that in mind rather than trying to force with kubernetes is the answer whats the problem mentality.



Chris Nesbitt-Smith
Note
If you're able to understand what kind of constraints you have



Chris Nesbitt-Smith
Note
and what goals you want to acheive



Chris Nesbitt-Smith
Note
you can begin to evaluate what kind of tooling you might need, and its important to do it that way round rather than solutions looking for a problem



Chris Nesbitt-Smith
Note
Aligned to that spectrum, looking back to Daniele's talk



Chris Nesbitt-Smith
Note
He spent some time mapping some of the tools to that spectrum in order to segregate tenants



Chris Nesbitt-Smith
Note
He gave a great overview

- Comparison of soft multi-tenancy vs. hard multi-tenancy (and everything in between)
- Evaluation of namespace-based, virtual cluster, and dedicated cluster approaches
- Criteria for selecting the most appropriate multi-tenancy strategy
- Comparison of tools such as vCluster, Capsule, Kamaji, kcp, k3k.



Chris Nesbitt-Smith
Note
What i am going to focus on is really this part the left hand side as dedicated clusters is hard so you can see we have a few option, I will talk about those



Chris Nesbitt-Smith
Note
I do want to point one thing out though that if you want crd isolation then its a bit trickey as crds are global objects. If thats is something that you want to look at you should definetly check vcluster as you can implement this without breaking the bank. Anyway lets look at these options starting from the left



Chris Nesbitt-Smith
Note
Once you've figured out your strategy of if a single cluster is sufficient



Chris Nesbitt-Smith
Note
or you need a cluster manager to orchestrate your orchestrators



Chris Nesbitt-Smith
Note
or dedicated clusters



Chris Nesbitt-Smith
Note
you can then layer on top the relevant tooling on that estate to make it meet your needs with the relevant tools be them built in kubernetes primitive things, or more complex solutions



Chris Nesbitt-Smith
Note
That was a long journey!
#recap-probes-1



Chris Nesbitt-Smith
Note
Kubernetes works best when you can share things, if you can share things, you'll find things easier



Chris Nesbitt-Smith
Note
However that sharing is predicated on a expectation that everyone is in the same trust domain, managing that sharing is much like dealing with a class of toddlers, it's hard and you'll be struggling to establish any degree of fairness



Chris Nesbitt-Smith
Note
Network resource is similarly difficult to divvy out fairly



Chris Nesbitt-Smith
Note
And limiting the blast radius of one workload to another in any sense is also hard



Chris Nesbitt-Smith
Note
In general security is a constant trade of security, and isolation for cost, complexity and usability



Chris Nesbitt-Smith
Note
And finally a quick thank you to loft labs, for hosting these three sessions with us.
If you've not seen them, then I'd consider Daniele and Salman's talk as essential watching, so absolutely go feast on those



Chris Nesbitt-Smith
Note
Thank you so much for your time, we've hopefully got some time for questions, if you don't get a chance to ask it, or you're not watching this live then please do drop a line in the loftlabs slack, or hunt me down on linkedin


