
Chris Nesbitt-Smith
Note
Hi,
Thank you so much for joining me here today, it'd be great to hear where you're all from so please do leave a comment in the chat and introduce yourself.
Likewise please use the comments if you've got any questions throughout this webinar and I'll do my best to get to them at the end, I'm also joined by some friends helping me in the chat who may get to them before I do.

Proactive cluster
autoscaling in
Kubernetes

Chris Nesbitt-Smith

Learnk8s -
Instructor+consultant

Crown Prosecution
Service (UK gov) -
Consultant

Chris Nesbitt-Smith
Note
So, to kick things off my name is Chris Nesbitt-Smith, I'm based in London and currently an instructor for Learnk8s, consultant to UK Government and tinkerer of open source stuff.
I've been using and abusing Kubernetes in production since it was 0.4, believe me when I say its been a journey!

I've definitely got the scars to show for it.

Chris Nesbitt-Smith
Note
So you believed the hype, that Kubernetes lets you scale infinitely, auto heal and so on.
Your cluster is self monitoring and scaling up instances of your cloud native stateless applications on demand when you need more.

Chris Nesbitt-Smith
Note
But all of a sudden your nodes are full, you can scale no more

Cluster AutoScaler
github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

Chris Nesbitt-Smith
Note
Enter the cluster autoscaler and of course a splash of yaml to save the day

Chris Nesbitt-Smith
Note
It can integrate with your cloud vendor

Chris Nesbitt-Smith
Note
To provision necessary nodes

Cluster AutoScaler

1. Memory Utilization

2. CPU Utilization

3. Pending pods

Chris Nesbitt-Smith
Note
and good news the autoscaler is configurable

Cluster AutoScaler

1. Memory Utilization

2. CPU Utilization

3. Pending pods

Chris Nesbitt-Smith
Note
though sadly as we'll see its not quite as configurable as you might expect

Chris Nesbitt-Smith
Note
there are alternatives but the official cluster autoscaler only scales up when there are pending pods

Chris Nesbitt-Smith
Note
in order to satisfy the demand, which is probably a good idea
since there is little point adding more nodes unless you have workload that needs them

Kubernetes Scheduler

Chris Nesbitt-Smith
Note
ok, so first lets refresh ourselves on how the Kubernetes scheduler works

Chris Nesbitt-Smith
Note
If I create a deployment with 2 replicas

Chris Nesbitt-Smith
Note
I do this by submitting my yaml to the API server, which writes it to etcd

Chris Nesbitt-Smith
Note
the controller is watching for this type of event, recognizes it needs to create some pods, which it does and these are now pending

Chris Nesbitt-Smith
Note
the scheduler is the component that is looking for pending pods, sees these and then schedules them to a node

Chris Nesbitt-Smith
Note
the scheduling however is broken into a few steps
From the initial queue
through filtering viable nodes to then scoring them before creating a binding

Requests & Scheduler

Chris Nesbitt-Smith
Note
but how does the scheduler know how much memory and cpu a pod uses? It does not…

Chris Nesbitt-Smith
Note
you need to spoon feed this with requests and limits

resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"

Chris Nesbitt-Smith
Note
If you don't specify requests and limits Kubernetes will play blind, your cluster will become overloaded, nodes will become over subscribed and you'll be constantly fighting fires.

So if your only takeaway is that all your containers should have requests and limits defined then we've done something useful here!

Requests are the initial ask, and limits are the point that your container will be throttled if its CPU or killed if its memory,

Chris Nesbitt-Smith
Note
Applications come in all sorts of shapes and sizes, so you may have some applications that are CPU intensive but don't require much memory, while others

Chris Nesbitt-Smith
Note
May have a greater memory than CPU footprint

Chris Nesbitt-Smith
Note
Those applications have to be deployed inside computing units which have (again) CPU and memory characteristics.

Chris Nesbitt-Smith
Note
For every application deployed in the cluster, Kubernetes makes a note of the memory and CPU requirement.

Chris Nesbitt-Smith
Note
It then decides where to place the application in the cluster. In this case, it's the node on the left.

Chris Nesbitt-Smith
Note
If another application of the same size is deployed, Kubernetes goes through the same process and finds the best node to run the app.

Chris Nesbitt-Smith
Note
In this case, Kubernetes places the app on the right side.

Chris Nesbitt-Smith
Note
As more applications

Chris Nesbitt-Smith
Note
are submitted to the cluster,

Chris Nesbitt-Smith
Note
Kubernetes keeps making

Chris Nesbitt-Smith
Note
notes of the CPU and

Chris Nesbitt-Smith
Note
memory requirements...

Chris Nesbitt-Smith
Note
... and allocating these apps in the cluster.

Chris Nesbitt-Smith
Note
If you play the game long enough, you might notice that Kubernetes is a skilled Tetris player:
- Your servers are the board.
- The apps are the blocks.
Kubernetes tries to fit as many blocks as efficiently as possible.

Requests & Limits

Chris Nesbitt-Smith
Note
But what about the size of the worker nodes

What kind of instance types can you use to build the cluster?
Nowadays the cloud vendors make almost every instance type available to be part of a cluster, so you've got free choice.
There's a catch, though.

Chris Nesbitt-Smith
Note
You'd be forgiven for thinking that if you get an 8gb ram 2 cpu node from your cloud vendor
you could deploy 4 pods that are 1.5gb ram and need a quarter CPU

Chris Nesbitt-Smith
Note
however its not quite so

Chris Nesbitt-Smith
Note
one pod remains pending, which if configured will of course cause the

Chris Nesbitt-Smith
Note
cluster autoscaler to create a new node and then your workload is eventually scheduled

Node instances

Chris Nesbitt-Smith
Note
but why is this

Chris Nesbitt-Smith
Note
When you provision a managed instance, you might think that the memory and CPU available can be used for running Pods.
And you are right.

Chris Nesbitt-Smith
Note
However, some memory and CPU should be saved for the operating system.

Chris Nesbitt-Smith
Note
And you should also reserve memory and CPU for the kubelet.

Chris Nesbitt-Smith
Note
Surely the the rest is made available to the pods?

Chris Nesbitt-Smith
Note
Not quite yet. You also need to reserve memory for the Eviction threshold.
If the kubelet notices that memory usage is going over that threshold, it will start evicting pods.

Chris Nesbitt-Smith
Note
Your cloud vendor will usually choose these numbers for you
For example AWS reserves 255MB of memory for the kubelet...

Chris Nesbitt-Smith
Note
And 11MB of memory for each Pod that you could deploy on that instance.

Chris Nesbitt-Smith
Note
This is the reserved memory for the kubelet. The CPU reserved is usually around 0.3 to 0.4.
For the operating system they reserve 100MB of memory and 0.1 CPU and for the eviction threshold, another 100 MB.

Chris Nesbitt-Smith
Note
In AWS If you select an M5.large, here's a visual recap of how the resources are subdivided.
With this particular instance, you can deploy up to 27 pods.

Cluster AutoScaler
Lead Time

Chris Nesbitt-Smith
Note
The other thing to consider is all this takes time

Chris Nesbitt-Smith
Note
Lets assume you've configured the horizontal pod autoscaler or HPA to scale up your pods dynamically, well thats where the journey probably starts

Chris Nesbitt-Smith
Note
to start with about 90 seconds for your Horizontal Pod Autoscaler to react and decide to scale up

Chris Nesbitt-Smith
Note
Then the cluster autoscaler takes around 30 seconds to request a new node from the cloud vendor

Chris Nesbitt-Smith
Note
Then around 4minutes for the machine to boot

Chris Nesbitt-Smith
Note
Then around another 30 seconds to join the cluster and be ready to run workload
Then you can of course add on time for pulling your container image that won't be cached

github.com/appvia/cloud-spend-forecaster

Chris Nesbitt-Smith
Note
To help visualize the impact this can have I have made a library that fakes a Kubernetes scheduler, and it allows you to specify many different types of pods, and model their scaling dynamics, tracking container startup times, and so on.
And define your node properties, it takes a lot of shortcuts in order to provide hundreds of thousands of intervals representing days in tens of milliseconds, it is not the real Kubernetes scheduler.
Pull requests are very welcome if you'd like to improve it!

Chris Nesbitt-Smith
Note
And to give you a way to play with it, I also made a game as a novelty for kubecon last year called Black Friday.

The scenario is that you're an SRE team supporting a retailer facing a spike in traffic on black friday and again on cyber Monday, with a lull between and a calm before and after.

It is a three tier service of frontend, backend, and database all of which have different scaling properties, startup times etc

So the scenario starts Thursday midnight, and ends Tuesday 23:59

You're on the hook for it so there are SLA penalties if you cause a request to be failed

It's a simple three tier app, if you go into the hints, you'll see some of the constraints.

The goal is configure your cluster to as closely follow the traffic spike, with just enough infra, failing some requests and getting a few SLA penalties might actually result in a greater profit.

DEMO POINT CLICK, CHANGE MIN THINGS TO 1 OF EACH AND DEMONSTRATE PROFIT, EXPLAIN GRAPHS

Please do feel free to play, may the odds ever be in your favour

Strategies for faster
scaling

Chris Nesbitt-Smith
Note
So, what do we do to stack the odds in our favor

Strategies for faster scaling

1. Don't scale!

2. (Pre) scale

Chris Nesbitt-Smith
Note
Well, we can not scale at all, thats always an option thats often over looked

Strategies for faster scaling

1. Don't scale!

2. (Pre) scale

Chris Nesbitt-Smith
Note
Or what if you could get a head start on the scaling

Don't Scale!

Chris Nesbitt-Smith
Note
Maybe not scaling sounds a bit flippant, what do I really mean by that?

Chris Nesbitt-Smith
Note
Going back to our scenario of fitting our pods on a machine

Chris Nesbitt-Smith
Note
taking into account the reserves for the kublet

Chris Nesbitt-Smith
Note
if you size the machine correctly, you can fit all your workload in the node

Chris Nesbitt-Smith
Note
This isn't easy given the vast array of possible machine sizes, so we've done the hard work for you and created an instance calculator

Guide About

KUBERNETES

POD

Requests 1
GB

0.1
CPU

Limits 1
GB

0.1
CPU

DAEMONSETS & AGENTS

Reserved 0
GB

0
CPU

CLOUD PROVIDER

AWS

Prefix delegation

INSTANCE TYPES

SORT INSTANCES BY

INSTANCE CALCULATORV2

ACCELERATOR OPTIMIZED ▼

COMPUTE OPTIMIZED ▼

GENERAL PURPOSE ▼

GPU OPTIMIZED ▼

HIGH PERFORMANCE ▼

MEMORY OPTIMIZED ▼

CORPORATE TRAINING

PUBLIC WORKSHOPS

BLOG

CONTACT US

https://learnkube.com/
https://learnkube.com/corporate-training
https://learnkube.com/training
https://learnkube.com/blog
https://learnkube.com/contact-us
Chris Nesbitt-Smith
Note
DEMO
drag sliders about

Proactive scaling

Chris Nesbitt-Smith
Note
Finally, on to the topic of this webinar, the wait is over

Chris Nesbitt-Smith
Note
What if we could always have at least one node ready for when you need it, removing that 4 minute wait

To do this we can create a placeholder pod, that

Chris Nesbitt-Smith
Note
as soon your workload comes along needing the resource, the placeholder pod is evicted

Chris Nesbitt-Smith
Note
causing the cluster autoscaler to boot a new machine to host the new replacement placeholder, and this will continue as you scale into further nodes, keeping you always one step ahead

LIVE DEMO

Chris Nesbitt-Smith
Note
Ok now to pray to the demo gods where I do a real live demo

Chris Nesbitt-Smith
Note
I've got a simple application, where you can see the effects of me clicking the scale buttons,
behind this is a real kubernetes cluster running in linnode, I've just got some javascript driving the changes to the kubernetes api to scale up and down

so we start with 1 replica, and I click to scale to 5, the current node gets saturated with 4 pods, and one is pending, behind the scenes now the cluster autoscaler is going to request a new node from linnode, so while I stall for about 3 minutes of what would otherwise be silence and me praying for it to work are there any questions?

As you saw, the node became available, and then it took a little longer for the CNI to come up and then to be able to schedule our pod.
And the timer shows that took
ok, now lets schedule back down to 1 and enable our placeholder <click scale to 1> <click placeholder on>

now thats all running, lets try scaling to 5 again <click scale to 5>

and as you can see that is far more performant

phew! that was more stressful than you can imagine, I can assure you there is a real cluster, to prove that really happened

default 0s Normal ScalingReplicaSet deployment/podinfo Scaled up replica set podinfo-8558cfcd5d to 5
default 0s Normal Scheduled pod/podinfo-8558cfcd5d-h4c5j Successfully assigned default/podinfo-8558cfcd5d-h4c5j to lke74013-115226-6331fbd57928
default 0s Normal SuccessfulCreate replicaset/podinfo-8558cfcd5d Created pod: podinfo-8558cfcd5d-h4c5j
default 0s Normal Scheduled pod/podinfo-8558cfcd5d-z9hvq Successfully assigned default/podinfo-8558cfcd5d-z9hvq to lke74013-115226-6331fbd57928
default 0s Normal Scheduled pod/podinfo-8558cfcd5d-d5khs Successfully assigned default/podinfo-8558cfcd5d-d5khs to lke74013-115226-6331fbd57928
default 0s Normal SuccessfulCreate replicaset/podinfo-8558cfcd5d Created pod: podinfo-8558cfcd5d-z9hvq
default 0s Normal SuccessfulCreate replicaset/podinfo-8558cfcd5d Created pod: podinfo-8558cfcd5d-d5khs
default 0s Warning FailedScheduling pod/podinfo-8558cfcd5d-5x2v7 0/2 nodes are available: 1 Insufficient memory, 1 node(s) didn't match Pod's node affinity/selector.
default 0s Normal Pulling pod/podinfo-8558cfcd5d-d5khs Pulling image "stefanprodan/podinfo"
default 0s Normal Pulling pod/podinfo-8558cfcd5d-h4c5j Pulling image "stefanprodan/podinfo"
default 0s Normal Pulling pod/podinfo-8558cfcd5d-z9hvq Pulling image "stefanprodan/podinfo"
default 0s Normal Pulled pod/podinfo-8558cfcd5d-d5khs Successfully pulled image "stefanprodan/podinfo" in 1.708158076s
default 0s Normal Created pod/podinfo-8558cfcd5d-d5khs Created container podinfo
default 0s Normal Started pod/podinfo-8558cfcd5d-d5khs Started container podinfo
default 0s Normal Pulled pod/podinfo-8558cfcd5d-h4c5j Successfully pulled image "stefanprodan/podinfo" in 3.104773992s
default 0s Normal Created pod/podinfo-8558cfcd5d-h4c5j Created container podinfo
default 0s Normal Started pod/podinfo-8558cfcd5d-h4c5j Started container podinfo
default 0s Normal NotTriggerScaleUp pod/podinfo-8558cfcd5d-5x2v7 pod didn't trigger scale-up: 1 node(s) didn't match Pod's node affinity/selector
default 0s Normal Pulled pod/podinfo-8558cfcd5d-z9hvq Successfully pulled image "stefanprodan/podinfo" in 8.442357379s
default 0s Normal Created pod/podinfo-8558cfcd5d-z9hvq Created container podinfo
default 0s Normal Started pod/podinfo-8558cfcd5d-z9hvq Started container podinfo
default 0s Warning FailedScheduling pod/podinfo-8558cfcd5d-5x2v7 0/2 nodes are available: 1 Insufficient memory, 1 node(s) didn't match Pod's node affinity/selector.
default 1s Normal NodeHasSufficientMemory node/lke74013-115226-6332129f84dd Node lke74013-115226-6332129f84dd status is now: NodeHasSufficientMemory
default 1s Normal NodeHasNoDiskPressure node/lke74013-115226-6332129f84dd Node lke74013-115226-6332129f84dd status is now: NodeHasNoDiskPressure
kube-system 0s Normal SuccessfulCreate daemonset/calico-node Created pod: calico-node-tpxpn
kube-system 0s Normal Scheduled pod/csi-linode-node-fvk46 Successfully assigned kube-system/csi-linode-node-fvk46 to lke74013-115226-6332129f84dd
kube-system 0s Normal Scheduled pod/calico-node-tpxpn Successfully assigned kube-system/calico-node-tpxpn to lke74013-115226-6332129f84dd
kube-system 0s Normal SuccessfulCreate daemonset/csi-linode-node Created pod: csi-linode-node-fvk46
kube-system 0s Normal Scheduled pod/kube-proxy-ds24f Successfully assigned kube-system/kube-proxy-ds24f to lke74013-115226-6332129f84dd
kube-system 0s Normal SuccessfulCreate daemonset/kube-proxy Created pod: kube-proxy-ds24f
default 0s Normal Synced node/lke74013-115226-6332129f84dd Node synced successfully
default 0s Normal Starting node/lke74013-115226-6332129f84dd Starting kubelet.
default 0s Normal NodeAllocatableEnforced node/lke74013-115226-6332129f84dd Updated Node Allocatable limit across pods
default 0s Normal NodeHasSufficientMemory node/lke74013-115226-6332129f84dd Node lke74013-115226-6332129f84dd status is now: NodeHasSufficientMemory
default 0s Normal NodeHasNoDiskPressure node/lke74013-115226-6332129f84dd Node lke74013-115226-6332129f84dd status is now: NodeHasNoDiskPressure
default 0s Normal NodeHasSufficientPID node/lke74013-115226-6332129f84dd Node lke74013-115226-6332129f84dd status is now: NodeHasSufficientPID
default 0s Normal RegisteredNode node/lke74013-115226-6332129f84dd Node lke74013-115226-6332129f84dd event: Registered Node lke74013-115226-6332129f84dd in Controller
kube-system 1s Normal Pulling pod/kube-proxy-ds24f Pulling image "linode/kube-proxy-amd64:v1.23.10"
kube-system 1s Normal Pulling pod/calico-node-tpxpn Pulling image "docker.io/calico/cni:v3.22.1"
kube-system 0s Normal Pulling pod/csi-linode-node-fvk46 Pulling image "bitnami/kubectl:1.16.3-debian-10-r36"
kube-system 0s Normal Pulled pod/kube-proxy-ds24f Successfully pulled image "linode/kube-proxy-amd64:v1.23.10" in 3.544455967s
kube-system 0s Normal Created pod/kube-proxy-ds24f Created container kube-proxy
kube-system 0s Normal Started pod/kube-proxy-ds24f Started container kube-proxy
default 0s Normal Starting node/lke74013-115226-6332129f84dd
kube-system 0s Normal Pulled pod/calico-node-tpxpn Successfully pulled image "docker.io/calico/cni:v3.22.1" in 8.06147771s
kube-system 1s Normal Created pod/calico-node-tpxpn Created container upgrade-ipam
kube-system 0s Normal Started pod/calico-node-tpxpn Started container upgrade-ipam
kube-system 0s Normal Pulled pod/calico-node-tpxpn Container image "docker.io/calico/cni:v3.22.1" already present on machine
kube-system 0s Normal Created pod/calico-node-tpxpn Created container install-cni
kube-system 0s Normal Started pod/calico-node-tpxpn Started container install-cni
kube-system 0s Normal Pulling pod/calico-node-tpxpn Pulling image "docker.io/calico/pod2daemon-flexvol:v3.22.1"
kube-system 0s Normal Pulled pod/csi-linode-node-fvk46 Successfully pulled image "bitnami/kubectl:1.16.3-debian-10-r36" in 11.657565568s
kube-system 0s Normal Created pod/csi-linode-node-fvk46 Created container init
kube-system 0s Normal Started pod/csi-linode-node-fvk46 Started container init
kube-system 0s Normal Pulling pod/csi-linode-node-fvk46 Pulling image "linode/csi-node-driver-registrar:v1.3.0"
default 0s Warning FailedScheduling pod/podinfo-8558cfcd5d-5x2v7 0/2 nodes are available: 1 Insufficient memory, 1 node(s) didn't match Pod's node affinity/selector.
kube-system 0s Normal Pulled pod/calico-node-tpxpn Successfully pulled image "docker.io/calico/pod2daemon-flexvol:v3.22.1" in 5.534993769s
kube-system 0s Normal Created pod/calico-node-tpxpn Created container flexvol-driver
kube-system 0s Normal Started pod/calico-node-tpxpn Started container flexvol-driver
kube-system 0s Normal Pulling pod/calico-node-tpxpn Pulling image "docker.io/calico/node:v3.22.1"
default 0s Normal NodeReady node/lke74013-115226-6332129f84dd Node lke74013-115226-6332129f84dd status is now: NodeReady
kube-system 0s Normal Pulled pod/csi-linode-node-fvk46 Successfully pulled image "linode/csi-node-driver-registrar:v1.3.0" in 4.741448054s
kube-system 0s Normal Created pod/csi-linode-node-fvk46 Created container csi-node-driver-registrar
kube-system 0s Normal Started pod/csi-linode-node-fvk46 Started container csi-node-driver-registrar
kube-system 0s Normal Pulling pod/csi-linode-node-fvk46 Pulling image "linode/linode-blockstorage-csi-driver:v0.5.0"
default 0s Normal Scheduled pod/podinfo-8558cfcd5d-5x2v7 Successfully assigned default/podinfo-8558cfcd5d-5x2v7 to lke74013-115226-6332129f84dd
default 0s Warning FailedCreatePodSandBox pod/podinfo-8558cfcd5d-5x2v7 Failed to create pod sandbox: rpc error: code = Unknown desc = failed to set up sandbox container "4d21d0493b5ac49eb7a173b9946fb379f9e0d98b1d55ab13547ad0826842bc6d" network for pod "podinfo-8558cfcd5d-5x2v7": networkPlugin cni failed to set up pod "podin
default 0s Normal TaintManagerEviction pod/podinfo-8558cfcd5d-5x2v7 Cancelling deletion of Pod default/podinfo-8558cfcd5d-5x2v7
default 0s Normal SandboxChanged pod/podinfo-8558cfcd5d-5x2v7 Pod sandbox changed, it will be killed and re-created.
default 0s Warning FailedCreatePodSandBox pod/podinfo-8558cfcd5d-5x2v7 Failed to create pod sandbox: rpc error: code = Unknown desc = failed to set up sandbox container "5d02b7c46e44913d4fabb9e02dc77044a3163f976c0a46f47c398108ac3fa000" network for pod "podinfo-8558cfcd5d-5x2v7": networkPlugin cni failed to set up pod "podin
default 0s Normal SandboxChanged pod/podinfo-8558cfcd5d-5x2v7 Pod sandbox changed, it will be killed and re-created.
default 0s Warning FailedCreatePodSandBox pod/podinfo-8558cfcd5d-5x2v7 Failed to create pod sandbox: rpc error: code = Unknown desc = failed to set up sandbox container "3447a34aeda5501828a9c476e0d6d7077eb7f895c8fbcd7022af1643865241c6" network for pod "podinfo-8558cfcd5d-5x2v7": networkPlugin cni failed to set up pod "podin
default 0s Normal SandboxChanged pod/podinfo-8558cfcd5d-5x2v7 Pod sandbox changed, it will be killed and re-created.
default 0s Warning FailedCreatePodSandBox pod/podinfo-8558cfcd5d-5x2v7 Failed to create pod sandbox: rpc error: code = Unknown desc = failed to set up sandbox container "77a8281777afde238f38cddc9141ed2e52c78540ccb4ad7b296da3fc8c20a6ef" network for pod "podinfo-8558cfcd5d-5x2v7": networkPlugin cni failed to set up pod "podin
default 0s Normal SandboxChanged pod/podinfo-8558cfcd5d-5x2v7 Pod sandbox changed, it will be killed and re-created.
kube-system 0s Normal Pulled pod/calico-node-tpxpn Successfully pulled image "docker.io/calico/node:v3.22.1" in 6.353089879s
kube-system 0s Normal Created pod/calico-node-tpxpn Created container calico-node
kube-system 0s Normal Started pod/calico-node-tpxpn Started container calico-node
default 0s Warning FailedCreatePodSandBox pod/podinfo-8558cfcd5d-5x2v7 Failed to create pod sandbox: rpc error: code = Unknown desc = failed to set up sandbox container "0fc48fe077b786da531ebc656016468d3ae3f41e6cf520e27b638dbfbab580e2" network for pod "podinfo-8558cfcd5d-5x2v7": networkPlugin cni failed to set up pod "podin
default 0s Normal SandboxChanged pod/podinfo-8558cfcd5d-5x2v7 Pod sandbox changed, it will be killed and re-created.
kube-system 0s Warning Unhealthy pod/calico-node-tpxpn Readiness probe failed: calico/node is not ready: BIRD is not ready: Error querying BIRD: unable to connect to BIRDv4 socket: dial unix /var/run/bird/bird.ctl: connect: no such file or directory
default 0s Normal Pulling pod/podinfo-8558cfcd5d-5x2v7 Pulling image "stefanprodan/podinfo"
kube-system 0s Warning Unhealthy pod/calico-node-tpxpn Readiness probe failed: calico/node is not ready: felix is not ready: readiness probe reporting 503
kube-system 0s Normal Pulled pod/csi-linode-node-fvk46 Successfully pulled image "linode/linode-blockstorage-csi-driver:v0.5.0" in 6.754070918s
kube-system 0s Normal Created pod/csi-linode-node-fvk46 Created container csi-linode-plugin
kube-system 0s Normal Started pod/csi-linode-node-fvk46 Started container csi-linode-plugin
kube-system 0s Warning Unhealthy pod/calico-node-tpxpn Readiness probe failed: calico/node is not ready: BIRD is not ready: Error querying BIRD: unable to connect to BIRDv4 socket: dial unix /var/run/calico/bird.ctl: connect: connection refused

01 raw cluster autoscaler01 raw cluster autoscaler

https://www.youtube.com/watch?v=stNgDdSX_gE
Chris Nesbitt-Smith
Note
SKIP IF THE LIVE DEMO WORKED

I've built a simple application, where you can see the effects of me clicking the scale button,
so we start with 1 replica, and I scale to 5, as you can see with my old world this takes some time to eventually add the additional node and scale

Chris Nesbitt-Smith
Note
SKIP IF THE LIVE DEMO WORKED
So same again, only now with our proactive approach of having a placeholder,
as soon as I scale to 5, my placeholder becomes descheduled from the node it was occupying,
so I've scaled up in around 10 seconds as opposed to the around 3 minutes we saw on the previous demo
eventually a new node is provisioned with the placeholder on it again

Designing the right
placeholder

Chris Nesbitt-Smith
Note
So how do we make this happen

Chris Nesbitt-Smith
Note
Firstly we need a placeholder that is big enough to know it'll never be schedule-able along side any real workload on a node, so it should be sized big enough to fill the node

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
 name: overprovisioning
value: -1
globalDefault: false

Chris Nesbitt-Smith
Note
Then you need to specify a low priority class, to make sure it is evicted as soon as there is a real workload

The placeholder pod competes for resources, so we need to define that we want it to have a low priority.

With a priority of -1, all other pods will have precedence, and the placeholder is evicted as soon as the cluster runs out of space.

DEMO

Chris Nesbitt-Smith
Note
OK now for a demo of how this works with pod autoscaling, in a real-ish world scenario
I'll be honest with you, I've exhausted my credit with the demo gods, so I'm going to play some video and provide a little narration.

annotated hpaannotated hpa

https://www.youtube.com/watch?v=kyi2UCzrENA
Chris Nesbitt-Smith
Note
<CLICK PLAY>

Before I start, to provide a little orientation, on the left side we can see requests per second that we're serving, bottom left you can see the nodes and the pods on them as you can see my nodes can take up to four of my workload pods

I've got a simple application that can handle a fixed number of requests, and I'm ramping up traffic, as you can see we start with two nodes, and we're able to sustainably handle the traffic increasing in, until we fill both nodes, and we continue to start backing up a list of pending pods that the HPA has decided it needs.
then we finally see Cluster autoscaler provide the nodes. I have manipulated these results a little so as to not leave you waiting the around 4 minutes for the node to be available.
In that time while we waited for the nodes to be available the traffic we're able to service really flattens out, but as soon as we've got more resource it goes up

annotated hpa proactiveannotated hpa proactive

https://www.youtube.com/watch?v=0uDj5Nqnlxc
Chris Nesbitt-Smith
Note
<CLICK PLAY>

Now we can compare that to our proactive pattern, where we have a placeholder pod keeping us a spare node ready at all times.
As the traffic builds up, we see that placeholder quickly become evicted and our workload pods become scheduled on that node. A new placeholder pod is created as pending, causing the cluster autoscaler to create a new node.
Sometimes however as happens here, the traffic build up and HPA has outpaced the speed at which we were able to stand up a new node.

Chris Nesbitt-Smith
Note
This all comes at an inevitable cost, your plan is to always have extra capacity ready and waiting for your workload to require it.
What might therefore be the better answers?

Chris Nesbitt-Smith
Note
You can tune your workload to make sure you're not leaving gaps

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass

Chris Nesbitt-Smith
Note
Or better yet, remember that pod priority thing we used, if you've got workload that suits on your cluster that you'd like to run and would give you more return on investment than the placeholder, which can handle stopping and starting when you need

Perhaps some house keeping, analytics, machine learning, or maybe just less important services, so you might want to prioritize the shopping cart supporting pods over the customer service desk ones you could structure your cluster workload to be more aligned to your businesses benefits

 Thanks Thanks

cns.mecns.me

talks.cns.metalks.cns.me

github.com/chrisnsgithub.com/chrisns

learnk8s.iolearnk8s.io

Q&AQ&A

Chris Nesbitt-SmithChris Nesbitt-Smith

cns.mecns.mecns.mecns.mecns.mecns.mecns.mecns.mecns.mecns.me

Chris Nesbitt-Smith
Note
I've been Chris Nesbitt-Smith, thank you again for joining me today.

Like subscribe whatever the kids do these days on LinkedIn, Github whatever and you can be assured there'll be no spam or much content at all since I'm awful at self promotion especially on social media. cns.me just points at my LinkedIn.

talks.cns.me contains this and other talks, they're all open source.

Questions are very welcome on this or anything else.

If I've not got to your question or you're not watching this live I'll do my best to get back to you, just leave the question in the kubernetes scaling slack channel

feel free to @ me so I see it!

