
Chris Nesbitt-Smith

PodSecurityPolicy is Dead,PodSecurityPolicy is Dead,
Long Live...?Long Live...?

UK Gov | Control Plane | LearnK8s | lots of open source

🤔🤔🤔🤔🤔

Chris Nesbitt-Smith
Note
Hello! Imagine a thing with human faces, what a treat, I get to stand not worry about being on mute, use my clicker and everything!

My name is Chris, and I've been trying, with some success to use Kubernetes since 0.4 and I've got opinions on it, so strap in.

I'm Solution Architect at Appvia, instructor at LearnK8s, and tinkerer of open source including maintaining some high profile projects in the home automation space.

I'm often talk too fast when doing these, please shout at me when this happens, and jump in with questions though there will also hopefully be time at the end.

--- ONLINE ---
Hello! Thank you so much for joining me here today.

So, to kick things off my name is Chris Nesbitt-Smith, I'm based in London and currently work with some well known brands like learnk8s, control plane, esynergy and various bits of UK Government I'm also a tinkerer of open source stuff.

I've been using and abusing Kubernetes in production since it was 0.4, believe me when I say its been a journey!

I've definitely got the scars to show for it.

It'd be great to hear where you're joining from today so if you could drop a comment in the chat and let me know where you are that'd be great.

We'll have time for any questions at the end if you want to drop them into the comments.

kubectl get pods

Chris Nesbitt-Smith
Note
By show of hands who's worked with pods before?

--- ONLINE ---

In a virtual, bit offline, by show of hands (or dropping off the stream) who's worked with pods before?

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

Chris Nesbitt-Smith
Note
Cool, and for anyone that didn't raise their hand, welcome to the party you almost missed it!

Pods are the smallest deployable units of computing that you can create and manage in Kubernetes, they represent a single instance of a containerized application running in your cluster.

PodSecurityWhat?

Chris Nesbitt-Smith
Note
Ok so now for the topic of this talk, pod security policies

kind: PodSecurityPolicy

Chris Nesbitt-Smith
Note
They've been around since 1.0, which is about a million Kubernetes years.

apiVersion: policy/v1beta1
kind: PodSecurityPolicy

Chris Nesbitt-Smith
Note
and in that time has never made it past the beta classification, and I believe may be last v1beta1 resource that is routinely used in production, that is after ingress left beta not long ago.

Chris Nesbitt-Smith
Note
Sadly that's not the case for PSPs, they were deprecated in 1.21, and was removed entirely in 1.25.

kubectl explain PodSecurityPolicy

Pod Security Policies enable fine-grained authorization of pod
creation and updates.

A Pod Security Policy is a cluster-level resource that controls
security sensitive aspects of the pod specification. The
PodSecurityPolicy objects define a set of conditions that a pod
must run with in order to be accepted into the system, as well as
defaults for the related fields.

https://kubernetes.io/docs/concepts/policy/pod-security-policy/

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
Chris Nesbitt-Smith
Note
What is a PSP apart from more words than should ever be on a slide?

kubectl explain PodSecurityPolicy

Pod Security Policies enable fine-grained authorization of pod
creation and updates.

A Pod Security Policy is a cluster-level resource that controls
security sensitive aspects of the pod specification. The
PodSecurityPolicy objects define a set of conditions that a pod
must run with in order to be accepted into the system, as well as
defaults for the related fields.

Chris Nesbitt-Smith
Note
Thats better
PSPs give cluster admins an ability to impose limits over things like running as root, opening ports on the host, types of volume you can use etc

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 name: example
spec:
 privileged: false
 seLinux:
 rule: RunAsAny
 supplementalGroups:
 rule: RunAsAny
 runAsUser:
 rule: RunAsAny
 fsGroup:
 rule: RunAsAny
 volumes:
 - "*"

Chris Nesbitt-Smith
Note
If you've not seen one before it looks something like this [pause]

apiVersion: v1
kind: Pod
metadata:
 name: demo
spec:
 containers:
 - name: demo
 image: alpine
 securityContext:
 privileged: true

Chris Nesbitt-Smith
Note
Who can give me an example of what this container can actually do, say if a remote code exploit is found, or your code is bad?

--- ONLINE ---
Looking at this pod, can anyone give me an example of what this container can actually do, say if a remote code exploit is found, or your code is bad?
If you can get ahead of me and leave a comment in the comments.

Live demo

Chris Nesbitt-Smith
Note
Lets have a quick explore and find out:

set +o history
kind create cluster --image=kindest/node:v1.23.0

kubectl run --image debian -ti unpriv

kubectl run --rm --privileged --image debian -ti priv

 ls /dev

 mkdir /foo && mount /dev/vda1 /foo
 export PATH=$PATH:$(find /foo/ -type f -name kubectl | head -n 1 | sed -r 's|/[^/]+$||')
 ln -s $(find /foo -type l -name kubelet-client-current.pem | sed -r 's|/[^/]+$||'| sed -r 's|/[^/]+$||') /var/lib/
 export KUBECONFIG=$(find /foo/ -type f -name kubelet.conf -print -quit)
 kubectl get pods -A
 kubectl get nodes

 - repartition disks
 - eBPF interception of kernel wide activity including network intercept
 - mount the root or any other file system which is a bad day, you've then got root on the node complete with the kubelet, which with a couple of get requests to the api server gives you admin and service account credentials on the api server.
 - Put simply, game over, real fast, everything on your cluster and everything your cluster connects to is at breach.

apiVersion: v1
kind: Pod
metadata:
 name: demo
spec:
 containers:
 - name: demo
 image: alpine
 volumeMounts:
 - mountPath: /storage
 name: storage
 volumes:
 - name: storage
 hostPath:
 path: /
 type: Directory

Chris Nesbitt-Smith
Note
Ok bit more obvious, again game over under the same terms as before

apiVersion: v1
kind: Pod
metadata:
 name: demo
spec:
 hostNetwork: true
 containers:
 - name: demo
 image: alpine

Chris Nesbitt-Smith
Note
How about this, can anyone help me out?

 - masquerade as other things to the network, maybe get 443 or 80 and get traffic that was intended for cluster wide ingress
 - talk to and masquerade with all sorts of local systems to the host, like X, dbus, iscsi, the container runtimes

Bit more involved but game over after you've jumped through a few hoops to get root

Chris Nesbitt-Smith
Note
Basically leave any one of the controls in the PSP open and you can be one bad pod away from loosing absolutely everything.

Chris Nesbitt-Smith
Note
So PSPs sound like a great idea right?

Chris Nesbitt-Smith
Note
Not so fast bucko!
Theres a whole heap of usability issues you might have encountered if you'd tried to use them in anger.

Chris Nesbitt-Smith
Note
The policy is based on the user that created the pod, not the workload.
If you're creating pods with CI for example that might require you to have multiple identities to authenticate to the API server with
But when was the last time you created a pod and not a deployment, statefulset or whatever else, well in that case the identity creating the pod is the service account for that controller

Chris Nesbitt-Smith
Note
Some of the parameters aren't simply admission controllers that accept or reject but mutating, this is not clear

Chris Nesbitt-Smith
Note
The of order of evaluation can be confusing and unpredictable with multiple policies with overlapping scope especially if some are mutating

Chris Nesbitt-Smith
Note
Only applies to new pods, not to anything already running in the cluster, which means you might not know when you update the policy that it breaks your production apps, that is until they happen to try to reschedule and fail, maybe on a scale event or node fail.

So now what?

Chris Nesbitt-Smith
Note
So what are the alternatives, what should we do, the clock is ticking, august is only another lockdown or two away!

Admission Control Anchore

Azure Policy Istio jspolicy K-
rail Kopf Kubewarden

Kyverno OPA Gatekeeper

Opslevel Polaris Prisma Cloud

Qualys Regula Sysdig TiDB

| |
| | |

| | |
| |

| | |
| | |

Chris Nesbitt-Smith
Note
Theres a fair amount of choice, here's just a few, you can of course write your own, it is just a webhook.

Admission Control Anchore

Azure Policy Istio jspolicy K-
rail Kopf Kubewarden

Kyverno OPA Gatekeeper

Opslevel Polaris Prisma Cloud

Qualys Regula Sysdig TiDB

| |
| | |

| | |
| |

| | |
| | |

Chris Nesbitt-Smith
Note
I'm going to focus on a few, because with a little help they provide a straight forward-ish migration journey

Wait, what about
Pod Security Standards

&
Pod Security Admission?

Chris Nesbitt-Smith
Note
There is an 'in tree' answer i.e. built in to Kubernetes, so why am I not pointing at that, grabbing my drink and walk off?
Pod Security Standards are most easily thought of as three rigidly defined predefined Pod Security Policies

Privileged

Chris Nesbitt-Smith
Note
Those are privileged, basically anything goes, and is the same as not defining a policy

Baseline

Chris Nesbitt-Smith
Note
Baseline, middle ground, stops some of the super obvious stuff, most your stuff should run at this tier without change

Restricted

Chris Nesbitt-Smith
Note
Restricted, The most restrictive policy, stops most things.
You should aspire to run stuff here, but realistically you'll probably have issues

Chris Nesbitt-Smith
Note
Rigid universal policies sounds great, its super easy to communicate these between teams, test against them and no confusion when deploying between different clusters, happy days right?

Chris Nesbitt-Smith
Note
Sadly not, for a few reasons
Ideally you'd run all your workload at restricted, but inevitably there'll be some things that can't quite fit that
Well restrictions are applied on a namespace level
And theres no way to grant fine grained exemptions, so your only option is to take a massive step down, and not for just the container but whole namespace

Chris Nesbitt-Smith
Note
Oh, and its applied with a label on the namespace, not even an annotation
WTF guys?!
So what's it good for, well the only thing I can see this as possibly good for is if you're a Software Vendor building products to run on Kubernetes.

Chris Nesbitt-Smith
Note
And if you're mad enough to be in that business

Chris Nesbitt-Smith
Note
Then if you can make your product run in restricted then it'll give you a good head start for whatever unique configuration your customers have implemented and demonstrate that you have considered the security implications of your product

Chris Nesbitt-Smith
Note
Ok so how do we migrate all our old legacy PSPs to something new
Well there is unfortunately no simple like-for-like mapping, PodSecurityPolicy and any of the replacements behave slightly differently, and for good reason too.

If you’ve been using PodSecurityPolicy for a while, you’ve likely developed some quite complex rules which have become entangled with the usability issues, so I would encourage you to take the opportunity to refactor and simplify over trying to continue what you’ve always done.

That said, there has been some work to ease the transition by reproducing the key capabilities and even calling them the same things in some cases.

Chris Nesbitt-Smith
Note
The short answer is...

Chris Nesbitt-Smith
Note
use a whizz-bang-super-duper tool that I made

Chris Nesbitt-Smith
Note
Simply provide your existing PSP and take your pick of policy engine from Kyverno, Kubewarden, or Gatekeeper.

Chris Nesbitt-Smith
Note
Or just paste it into our simple web app and let your browser do the work

Live demoLive demo

Chris Nesbitt-Smith
Note
Live demo time!

PodSecurityPolicy

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 name: example
spec:
 privileged: false
 seLinux:
 rule: RunAsAny
 supplementalGroups:
 rule: RunAsAny
 runAsUser:
 rule: RunAsAny
 fsGroup:
 rule: RunAsAny
 volumes:
 - "*"

Chris Nesbitt-Smith
Note
Your PSP just converted seamlessly to

Kyverno
apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
 name: example
spec:
 rules:
 - validate:
 pattern:
 spec:
 "=(initContainers)":
 - "=(securityContext)":
 "=(privileged)": false
 "=(ephemeralContainers)":
 - "=(securityContext)":
 "=(privileged)": false
 containers:
 - "=(securityContext)":
 "=(privileged)": false
 message: Rejected by psp-privileged-0 rule
 match:
 resources:
 kinds:
 - Pod

name: psp-privileged-0

Chris Nesbitt-Smith
Note
Kyverno . .

Kubewarden
apiVersion: policies.kubewarden.io/v1alpha2
kind: ClusterAdmissionPolicy
metadata:
 name: example
spec:
 module: registry://ghcr.io/kubewarden/policies/pod-privileged:v0.1.9
 rules:
 - apiGroups:
 - ""
 apiVersions:
 - v1
 resources:
 - pods
 operations:
 - CREATE
 - UPDATE
 mutating: false
 settings: null

Chris Nesbitt-Smith
Note
Kubewarden . .

OPA Gatekeeper

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sPSPPrivilegedContainer
metadata:
 name: example
spec:
 match:
 kinds:
 - apiGroups:
 - ""
 kinds:
 - Pod
 parameters: null

Chris Nesbitt-Smith
Note
or Gatekeeper . .

Chris Nesbitt-Smith
Note
That was easy

But, should you migrate from
PodSecurityPolicy?

Chris Nesbitt-Smith
Note
But should you?
Don't be fooled, just because I wrote a tool to help does not mean I think any of this is even remotely a good idea for the vast majority of use cases.

But it got your attention.

Chris Nesbitt-Smith
Note
Using a cluster enforced policy does not guaranty any real security, you may well find as a cure, its worse than the disease.

Chris Nesbitt-Smith
Note
We're seeing more and more vulnerabilities and in the wild attacks that cluster enforced policy would not protect against.

sorry
(not sorry)

Chris Nesbitt-Smith
Note
If you've been keeping up you'll have realized I've taken you on a roller coaster of explaining a problem with security in Kubernetes, a solution of PSP, another problem of PSPs going away, another solution of a tool that I've built and yet another problem that undermines everything I've just told you.

Chris Nesbitt-Smith
Note
The good news is there are answers, they are simple but not easy

Chris Nesbitt-Smith
Note
but I'm out of time, so you'll have to come back and find out in my next talk

Chris Nesbitt-Smith
Note
As a sign of good faith though

AppArmor Continuous Integration

Cultural Change eBPF GitOps Keep it
Stupid Simple Kernel Level Protection

Policy as code seccomp Secure By
Design Security Profiles Operator

SELinux Shared Responsibility Model

Shift Left Testing Version Controlled
Policy Zero trust

| |
| | |

| |
| |

| |
| |

| |
|

Chris Nesbitt-Smith
Note
You can expect a scenic walk through buzzwords like these and I'm excited to be able to share some hard but simple solutions that can provide a robust level of coverage and also advice on how to tackle the cultural change that needs to go hand in hand with the tech.

 Thanks
cns.me

github.com/chrisns

github.com/appvia

appvia.io/blog

Chris Nesbitt-Smith

Chris Nesbitt-Smith
Note
Thanks for your time, hopefully this has been interesting if a tease.

Please do follow me on LinkedIn, Twitter, Github and you can be assured there'll be no spam since I'm awful at self promotion especially on social media. cns.me just points at my linkedin

The original content for this talk and some of the solutions I've alluded to including how to do Policy as Versioned Code are on the appvia.io blog.

Questions are very welcome on this or anything else, If I miss you or you're not watching this live I'll try and keep an eye on the comments, or find me on the DevSecCon discord or LinkedIn.

